Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization
نویسندگان
چکیده
In this paper we make two contributions to unsupervised domain adaptation in the convolutional neural network. First, our approach transfers knowledge in the deep side of neural networks for all convolutional layers. Previous methods usually do so by directly aligning higherlevel representations, e.g., aligning the activations of fullyconnected layers. In this case, although the convolutional layers can be modified through gradient back-propagation, but not significantly. Our approach takes advantage of the natural image correspondence built by CycleGAN. Departing from previous methods, we use every convolutional layer of the target network to uncover the knowledge shared by the source domain through an attention alignment mechanism. The discriminative part of an image is relatively insensitive to the change of image style, ensuring our attention alignment particularly suitable for robust knowledge adaptation. Second, we estimate the posterior label distribution of the unlabeled data to train the target network. Previous methods, which iteratively update the pseudo labels by the target network and refine the target network by the updated pseudo labels, are straightforward but vulnerable to noisy labels. Instead, our approach uses category distribution to calculate the cross-entropy loss for training, thereby ameliorating deviation accumulation. The two contributions make our approach outperform the state-of-theart methods by +2.6% in all the six transfer tasks on Office31 on average. Notably, our approach yields +5.1% improvement for the challenging D→ A task.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملAdversarial Feature Augmentation for Unsupervised Domain Adaptation
Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones...
متن کاملMinimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation
In this work, we face the problem of unsupervised domain adaptation with a novel deep learning approach which leverages on our finding that entropy minimization is induced by the optimal alignment of second order statistics between source and target domains. We formally demonstrate this hypothesis and, aiming at achieving an optimal alignment in practical cases, we adopt a more principled strat...
متن کاملUnsupervised Domain Adaptation for Semantic Segmentation with GANs
Visual Domain Adaptation is a problem of immense importance in computer vision. Previous approaches showcase the inability of even deep neural networks to learn informative representations across domain shift. This problem is more severe for tasks where acquiring hand labeled data is extremely hard and tedious. In this work, we focus on adapting the representations learned by segmentation netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.10068 شماره
صفحات -
تاریخ انتشار 2018